
CPU Scheduling Algorithm Examples 
 
The following will explain several common scheduling strategies that 
examine only a single CPU burst each for a small number of processes.  
 
First-Come First-Serve Scheduling, FCFS 
 
• FCFS is very simple - Just a FIFO queue. 
• Unfortunately, however, FCFS can yield some very long average wait 

times, particularly if the first process to get there takes a long time. 
For example, consider the following three processes: 
 

Process Burst Time 
P1 24 
P2 3 
P3 3 

 
• In the Gantt chart below, process P1 arrived first. The average waiting 

time for the three processes is (0 + 24 + 27) / 3 = 17.0 
• In the second Gantt chart below, the same three processes have an 

average wait time of (0 + 3 + 6) / 3 = 3.0. The total run time for the 
three bursts is the same, but in the second case two of the three 
finish much quicker, and the other process is only delayed by a 
short amount. 

 
• FCFS can also block the system in a busy dynamic system in another 

way, known as the convoy effect. When one CPU intensive process 
blocks the CPU, several I/O intensive processes can get backed up 
behind it, leaving the I/O devices idle. When the CPU hog finally 



relinquishes the CPU, then the I/O processes pass through the CPU 
quickly, leaving the CPU idle while everyone queues up for I/O, 
and then the cycle repeats itself when the CPU intensive process 
gets back to the ready queue. 

 
Shortest-Job-First Scheduling, SJF 
 
• The idea behind the SJF algorithm is to pick the quickest job that 

needs to be done, get it out of the way first, and then pick the next 
smallest job to do next. 

• Technically this algorithm picks a process based on the next shortest 
CPU burst, not the overall process time. 

• For example, the Gantt chart below is based upon the following CPU 
burst times, and the assumption that all jobs arrive at the same 
time. 

Process Burst Time 
P1 6 
P2 8 
P3 7 
P4 3 
 

 
• In the case above the average wait time is (0 + 3 + 9 + 16) / 4 = 7.0, as 

opposed to 10.25 for FCFS for the same processes. 
• SJF can be proven to be the fastest scheduling algorithm, but it suffers 

from one important problem: How do you know how long the next 
CPU burst is going to be? 

◦ For long-term batch jobs this can be done based upon the limits 
that users set for their jobs when they submit them, which 
encourages them to set low limits, but risks their having to 
re-submit the job if they set the limit too low. However, that 
does not work for short-term CPU scheduling on an 
interactive system. 



◦ Another option would be to statistically measure the run time 
characteristics of jobs, particularly if the same tasks are run 
repeatedly and predictably. But once again that isn’t a viable 
option for short term CPU scheduling in the real world. 

◦ A more practical approach is to predict the length of the next 
burst, based on some historical measurement of recent burst 
times for this process. One simple, fast, and relatively 
accurate method is the exponential average. (You don’t need 
to know how to calculate this) 

• SJF can be either preemptive or non-preemptive. Preemption occurs 
when a new process arrives in the ready queue that has a predicted 
burst time shorter than the time remaining in the process whose 
burst is currently on the CPU. Preemptive SJF is sometimes 
referred to as shortest remaining time first scheduling. 

• For example, the following Gantt chart is based upon the following 
data: 
Process Arrival Time Burst Time 
P1 0 8 
P2 1 4 
P3 2 9 
p4 3 5 

 
• The average wait time in this case is (( 5 - 3 ) + ( 10 - 1 ) + ( 17 - 2 )) / 

4 = 26/4 = 6.5 (As opposed to 7.75 for non-preemptive SJF or 8.75 
for FCFS) 

 
Priority Scheduling 
 
• Priority scheduling is a more general case of SJF, in which each job is 

assigned a priority and the job with the highest priority gets 
scheduled first. SJF uses the inverse of the next expected burst 
time as its priority - The smaller the expected burst, the higher the 



priority. 
• Note that in practice, priorities are implemented using integers within a 

fixed range, but there is no agreed-upon convention as to whether 
“high” priorities use large numbers or small numbers. Your 
textbook uses low number for high priorities, with 0 being the 
highest possible priority. 

• For example, the following Gantt chart is based upon the process burst 
times and priorities and yields an average waiting time of 8.2: 
Process Burst Time Priority 
P1 10 3 
P2 1 1 
P3 2 4 
P4 1 5 
P5 5 2 

 
• Priorities can be assigned either internally or externally. Internal 

priorities are assigned by the OS using criteria such as average 
burst time, ratio of CPU to I/O activity, system resource use, and 
other factors available to the kernel. External priorities are 
assigned by users, based on the importance of the job, fees paid, 
politics, etc. 

• Priority scheduling can be either preemptive or non-preemptive. 
• Priority scheduling can suffer from a major problem known as 

indefinite blocking, or starvation, in which a low-priority task can 
wait forever because there are always some other jobs around that 
have higher priority. 

◦ If this problem occurs, then processes will either run eventually 
when the system load lightens or will eventually get lost 
when the system is shut down or crashes. 

◦ One common solution to this problem is aging, in which 
priorities of jobs increase the longer they wait. Under this 
scheme a low-priority job will eventually get its priority 



raised high enough that it gets run. 
 
Round Robin Scheduling 
 
• Round robin scheduling is similar to FCFS scheduling, except that 

CPU bursts are assigned with limits called time quantum. 
• When a process is given the CPU, a timer is set for whatever value has 

been set for a time quantum. 
◦ If the process finishes its burst before the time quantum timer 

expires, then it is swapped out of the CPU just like the 
normal FCFS algorithm. 

◦ If the timer goes off first, then the process is swapped out of the 
CPU and moved to the back end of the ready queue. 

• The ready queue is maintained as a circular queue, so when all 
processes have had a turn, then the scheduler gives the first process 
another turn, and so on. 

• RR scheduling can give the effect of all processors sharing the CPU 
equally, although the average wait time can be longer than with 
other scheduling algorithms. In the following example the average 
wait time is 5.66. 
Process Burst Time 
P1 24 
P2 3 
P3 3 

 
• The performance of RR is sensitive to the time quantum selected. If 

the quantum is large enough, then RR reduces to the FCFS 
algorithm; If it is very small, then each process gets 1/nth of the 
processor time and share the CPU equally. 

• BUT, a real system invokes overhead for every context switch, and the 
smaller the time quantum the more context switches there are. (See 
Figure 5.4 below) Most modern systems use time quantum 
between 10 and 100 milliseconds, and context switch times on the 



order of 10 microseconds, so the overhead is small relative to the 
time quantum. 

 
 
• In general, turnaround time is minimized if most processes finish their 

next CPU burst within one time quantum. For example, with three 
processes of 10 bursts each, the average turnaround time for 1 
quantum is 29, and for 10 quantum it reduces to 20. However, if it 
is made too large, then RR just degenerates to FCFS. A rule of 
thumb is that 80% of CPU bursts should be smaller than the time 
quantum. 

 


